1. | Takai D, Jones PA: Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99:3740-3745, 2002 Crossref, Medline, Google Scholar |
2. | Fujita N, Takebayashi S, Okumura K, et al: Methylation-mediated transcriptional silencing in euchromatin by methyl-CpG binding protein MBD1 isoforms. Mol Cell Biol 19:6415-6426, 1999 Crossref, Medline, Google Scholar |
3. | Dawson MA, Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell 150:12-27, 2012 Crossref, Medline, Google Scholar |
4. | Herman JG, Merlo A, Mao L, et al: Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55:4525-4530, 1995 Medline, Google Scholar |
5. | Stirzaker C, Millar DS, Paul CL, et al: Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res 57:2229-2237, 1997 Medline, Google Scholar |
6. | Kane MF, Loda M, Gaida GM, et al: Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808-811, 1997 Medline, Google Scholar |
7. | Clozel T, Yang S, Elstrom RL, et al: Mechanism-based epigenetic chemosensitization therapy of diffuse large B-cell lymphoma. Cancer Discov 3:1002-1019, 2013 Crossref, Medline, Google Scholar |
8. | Yu SE, Park SH, Jang YK: Epigenetic silencing of TNFSF7 (CD70) by DNA methylation during progression to breast cancer. Mol Cells 29:217-221, 2010 Crossref, Medline, Google Scholar |
9. | Satoh A, Toyota M, Ikeda H, et al: Epigenetic inactivation of class II transactivator (CIITA) is associated with the absence of interferon-gamma-induced HLA-DR expression in colorectal and gastric cancer cells. Oncogene 23:8876-8886, 2004 Crossref, Medline, Google Scholar |
10. | Chiappinelli KB, Strissel PL, Desrichard A, et al: Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 164:1073, 2016 Crossref, Medline, Google Scholar |
11. | Tang B, Li Y, Qi G, et al: Clinicopathological significance of CDKN2A promoter hypermethylation frequency with pancreatic cancer. Sci Rep 5:13563, 2015 Crossref, Medline, Google Scholar |
12. | Maesawa C, Tamura G, Nishizuka S, et al: Inactivation of the CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma. Cancer Res 56:3875-3878, 1996 Medline, Google Scholar |
13. | Takita J, Hayashi Y, Nakajima T, et al: The p16 (CDKN2A) gene is involved in the growth of neuroblastoma cells and its expression is associated with prognosis of neuroblastoma patients. Oncogene 17:3137-3143, 1998 Crossref, Medline, Google Scholar |
14. | Esteller M, González S, Risques RA, et al: K-ras and p16 aberrations confer poor prognosis in human colorectal cancer. J Clin Oncol 19:299-304, 2001 Link, Google Scholar |
15. | Figueroa ME, Lugthart S, Li Y, et al: DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17:13-27, 2010 Crossref, Medline, Google Scholar |
16. | Luskin MR, Gimotty PA, Smith C, et al: A clinical measure of DNA methylation predicts outcome in de novo acute myeloid leukemia. JCI Insight 1:e87323, 2016 Google Scholar |
17. | Meldi K, Qin T, Buchi F, et al: Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Invest 125:1857-1872, 2015 Crossref, Medline, Google Scholar |
18. | Weller M, Tabatabai G, Kästner B, et al: MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: The DIRECTOR trial. Clin Cancer Res 21:2057-2064, 2015 Crossref, Medline, Google Scholar |
19. | Esteller M, Garcia-Foncillas J, Andion E, et al: Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350-1354, 2000 Crossref, Medline, Google Scholar |
20. | Hegi ME, Diserens AC, Gorlia T, et al: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997-1003, 2005 Crossref, Medline, Google Scholar |
21. | Kewitz S, Stiefel M, Kramm CM, et al: Impact of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and MGMT expression on dacarbazine resistance of Hodgkin’s lymphoma cells. Leuk Res 38:138-143, 2014 Crossref, Medline, Google Scholar |
22. | Tuominen R, Jewell R, van den Oord JJ, et al: MGMT promoter methylation is associated with temozolomide response and prolonged progression-free survival in disseminated cutaneous melanoma. Int J Cancer 136:2844-2853, 2015 Crossref, Medline, Google Scholar |
23. | Qui J, Peng B, Tang Y, et al: A CpG methylation signature predicts recurrence in early-stage hepatocellular carcinoma: Results from a multicenter study. J Clin Oncol 35:734-742, 2017 Link, Google Scholar |
24. | Visvanathan K, Fackler MS, Zhang Z, et al: Monitoring of serum DNA methylation as an early independent marker of response and survival in metastatic breast cancer: TBCRC 005 prospective biomarker study. J Clin Oncol 35:751-758, 2017 Link, Google Scholar |
25. | Johnson DA, Barclay RL, Mergener K, et al: Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening: A prospective multicenter study. PLoS One 9:e98238, 2014 Crossref, Medline, Google Scholar |
26. | Church TR, Wandell M, Lofton-Day C, et al: Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 63:317-325, 2014 Crossref, Medline, Google Scholar |
27. | Barault L, Amatu A, Bleeker FE, et al: Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer. Ann Oncol 26:1994-1999, 2015 Crossref, Medline, Google Scholar |
28. | Kristensen LS, Hansen JW, Kristensen SS, et al: Aberrant methylation of cell-free circulating DNA in plasma predicts poor outcome in diffuse large B cell lymphoma. Clin Epigenetics 8:95, 2016 Crossref, Medline, Google Scholar |
29. | Li S, Garrett-Bakelman FE, Chung SS, et al: Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med 22:792-799, 2016 Crossref, Medline, Google Scholar |
30. | Pan H, Jiang Y, Boi M, et al: Epigenomic evolution in diffuse large B-cell lymphomas. Nat Commun 6:6921, 2015 Crossref, Medline, Google Scholar |
31. | De S, Shaknovich R, Riester M, et al: Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity. PLoS Genet 9:e1003137, 2013 Crossref, Medline, Google Scholar |
32. | Landau DA, Clement K, Ziller MJ, et al: Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell 26:813-825, 2014 Crossref, Medline, Google Scholar |